Hybrid Evolutionary Computation for Continuous Optimization
نویسندگان
چکیده
Hybrid optimization algorithms have gained popularity as it has become apparent there cannot be a universal optimization strategy which is globally more beneficial than any other. Despite their popularity, hybridization frameworks require more detailed categorization regarding: the nature of the problem domain, the constituent algorithms, the coupling schema and the intended area of application. This report proposes a hybrid algorithm for solving small to large-scale continuous global optimization problems. It comprises evolutionary computation (EC) algorithms and a sequential quadratic programming (SQP) algorithm; combined in a collaborative portfolio. The SQP is a gradient based local search method. To optimize the individual contributions of the EC and SQP algorithms for the overall success of the proposed hybrid system, improvements were made in key features of these algorithms. The report proposes enhancements in: i) the evolutionary algorithm, ii) a new convergence detection mechanism was proposed; and iii) in the methods for evaluating the search directions and step sizes for the SQP local search algorithm. The proposed hybrid design aim was to ensure that the two algorithms complement each other by exploring and exploiting the problem search space. Preliminary results justify that an adept hybridization of evolutionary algorithms with a suitable local search method, could yield a robust and efficient means of solving wide range of global optimization problems. Finally, a discussion of the outcomes of the initial investigation and a review of the associated challenges and inherent limitations of the proposed method is presented to complete the investigation. The report highlights extensive research, particularly, some potential case studies and application areas.
منابع مشابه
Hybrid biogeography-based evolutionary algorithms
Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs. We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the 2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems. The...
متن کاملBenchmarking NLopt and state-of-the-art algorithms for continuous global optimization via IACOR
This paper presents a comparative analysis of the performance of the Incremental Ant Colony algorithm for continuous optimization (IACOR), with different algorithms provided in the NLopt library. The key objective is to understand how the various algorithms in the NLopt library perform in combination with the Multi Trajectory Local Search (Mtsls1) technique. A hybrid approach has been introduce...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.3469 شماره
صفحات -
تاریخ انتشار 2013